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Abstract: We consider a supersymmetric Grand Unified Theory (GUT) based on the

gauge group SO(10) suggested by Aulakh et al., which features two-step intermediate

symmetry breaking, SO(10) → SU(4)C×SU(2)L×SU(2)R → SU(3)C×U(1)B−L×SU(2)L×

SU(2)R → SU(3)C×SU(2)L×U(1)Y . 45, 54, 126+126 dimensional representations of Higgs

superfields are employed to achieve this symmetry breaking chain. We also introduce a

second, very heavy, pair of Higgs doublets, which modifies the Yukawa couplings of matter

fields relative to minimal SO(10) predictions. We analyze the differences in the low energy

phenomenology compared to that of mSUGRA, assuming universal soft breaking scalar

masses, gaugino masses and trilinear couplings at the GUT scale. We find that thermal

neutralino Dark Matter remains viable in this scenario, although for small and moderate

values of tan β the allowed region is even more highly constrained than in mSUGRA, and

depends strongly on the the light neutrino masses.
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1. Introduction

Grand Unified Theories (GUTs) based on the gauge group SO(10) [1, 2] have been inves-

tigated extensively. This choice of gauge group has several appealing features. First of all,

it has room for a right-handed neutrino per generation in the 16-dimensional irreducible

spinor representation which includes all known matter fields. Thus it provides a beautiful

explanation of the smallness of the neutrino mass via the “seesaw mechanism” [3]. More-

over, the existence of very massive right-handed neutrinos might also allow to explain the

asymmetry between matter and antimatter in the Universe by thermal leptogenesis [4].

Furthermore, SO(10) contains the “Pati-Salam” [5] group SU(4)C × SU(2)L × SU(2)R as

subgroup, meaning that parity is preserved at high energy and broken spontaneously.

On the other hand, the fact that the rank of SO(10) is five causes some complications.

Recall that the rank of the Standard Model (SM) gauge group GSM = SU(3)C × SU(2)L ×

U(1)Y is only four. There are several ways of breaking SO(10) down to GSM, depending

on which representations of Higgs fields are introduced in the theory. Here we consider the

possibility of having intermediate phase(s) at energy scales well below the GUT scale. The

existence of a scale near 1014 GeV can be motivated by neutrino oscillation experiments [6 –

8]: the mass of the heaviest neutrino cannot be less than
√

δm2
atm ∼ 0.04 eV. In the

seesaw mechanism this translates into an upper bound on the right-handed Majorana

neutrinos mass if we assume that the largest neutrino Yukawa coupling is order unity,

MN . 1014 GeV. Note that MN breaks the SU(2)R subgroup of SO(10). It thus seems

natural to assume the left-right symmetric subgroup of SO(10) to be broken to GSM near

this scale (“MR”), if we assume that the Yukawa coupling that gives rise to the Majorana

mass MN is also of order unity.

In this work, we will analyze the consequences of this assumption, by considering the

low energy phenomenology of a supersymmetric SO(10) model suggested by Aulakh et

al. [9]. It features the symmetry breaking chain

SO(10)
54

−−→
MX

G422D
45

−−→
MC

G3122
126+126
−−−−−→

MR

GSM . (1.1)

Here we have used the notation G3122 = SU(3)C × U(1)B−L × SU(2)R × SU(2)L and

G422D = SU(4)C×SU(2)R×SU(2)L×D, where D is a discrete symmetry which ensures that

SU(2)L and SU(2)R have equal gauge couplings. We assume universal (“mSUGRA” [10])

boundary conditions for the soft supersymmetry breaking terms at the GUT scale MX .

This means that all soft breaking scalar masses are equal to m0 at the GUT scale, while all

gaugino masses are equal to M1/2; moreover, all SUSY breaking trilinear scalar couplings

are characterized by the single parameter A0.

Introducing two intermediate scales, and the corresponding additional gauge, matter

and Higgs superfields, has three main effects. First, the right-handed neutrinos obtain

Majorana masses at scale MR by coupling to the 126–dimensional Higgs whose vacuum

expectation value (VEV) is responsible for breaking G3122 in eq. (1.1). These Majorana

Yukawa couplings, as well as the extra Dirac couplings of the light neutrinos, will change

the low energy spectrum of soft breaking parameters via renormalization group equations

– 2 –
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(RGEs). Secondly, since we have to introduce many more additional Higgs than gauge

superfields to achieve the symmetry breaking chain (1.1), all gauge couplings increase quite

rapidly at high energy scales >
∼ MR. As a result the gaugino masses, which we assume

to be universal at MX , decrease significantly when they evolve down to MR. Finally, the

enhanced gauge symmetry at energies >∼ MR also increases the size of gauge contributions

to the RGE of all scalar masses. Note that the second and third effect tend to cancel, if

the scalar masses are expressed in terms of the GUT-scale input parameter m0 and M1/2.

The rest of this paper is organized as follows. In the next section, we review the main

features of the model [9] we are considering. We also describe the numerical methods used

in our analysis. In section 3 we discuss the most important experimental and cosmological

constraints on the parameter space of the model. Our numerical results are given in

section 4. Special attention is devoted to the regions of parameter space where the lightest

neutralino makes a good thermal Dark Matter candidate in standard cosmology. Finally,

we conclude in section 5.

2. The set-up

2.1 The model

We will consider the model suggested by Aulakh et al. [9]. It is based on the gauge group

SO(10). Besides three generations of matter superfields residing in 16–dimensional repre-

sentations as well as the 45–dimensional gauge superfields, we introduce Higgs superfields

in the 54, 45, 126, 126 and 10 representations of SO(10). The Higgs superfields required

to break SO(10) down to GSM can be described by the tensors

54 : Sij = Sji and Sii = 0 , 45 : Aij = −Aji ,

126 : Σijklm =
i

5!
ǫijklmopqrsΣopqrs ,

126 : Σijklm = −
i

5!
ǫijklmopqrsΣopqrs (2.1)

where the subscripts i, j, k, . . . run from 1 to 10, and repeated subscripts are summed.

This allows us to realize the symmetry breaking chain (1.1) with a purely renormaliz-

able superpotential, given by [9]

WSSB =
mS

2
trS2+

λS

3
trS3+

mA

2
trA2+λtrA2S+mΣΣΣ+ηSΣ2S+ηSΣ

2
S+ηAΣΣA . (2.2)

A crucial observation [11, 9] is that some components of the Higgs superfields listed in (2.1)

are much lighter than one might naively expect. For example, even though the 45–plet A

is responsible for the breaking of G422D to G3122 at scale MC , some components of A only

acquire masses of order M2
C/MX or M2

R/MC , whichever is larger. Similarly, even though Σ

and Σ are responsible for breaking G3122 to the SM gauge group, some of their components

only get masses of order M2
R/MX . On the other hand, some components of A,Σ and Σ

obtain masses of order MX .
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State Mass

all of S

all of A, except (15, 1, 1)A ∼ MX

all of Σ and Σ, except SU(4)C (anti–)decuplets

(10, 3, 1)Σ and (10, 3, 1)Σ
color triplets and sextets of (10, 1, 3)Σ and (10, 1, 3)Σ ∼ MC

color triplets of (15, 1, 1)A

(δ0 − δ
0
), δ+, δ

−
∼ MR

color octet and singlet of (15, 1, 1)A ∼ M1 ≡ max
[

M2

R

MC
,

M2

C

MX

]

(δ0 + δ
0
), δ++, δ

−−
∼ M2 ≡ M2

R/MX

Table 1: The spectrum of Higgs superfields after symmetry breaking. The Higgs superfields have

been introduced in eq. (2.1), and their decomposition into irreducible representations of SU(4)C ×

SU(2)L×SU(2)R is given in eq. (2.3). δ0,+,++ form the color singlet part of the (10, 1, 3) component

of Σ, while δ̄0,−,−− form the color singlet part of (10, 1, 3) of Σ. Adapted from ref. [9].

This is summarized in table 1. Here we have used the decompositions of the Higgs

fields under SU(4)C × SU(2)L × SU(2)R:

S = (1, 1, 1) ⊕ (20, 1, 1) ⊕ (1, 3, 3) ⊕ (6, 2, 2) ;

A = (15, 1, 1) ⊕ (1, 1, 3) ⊕ (1, 3, 1) ⊕ (6, 2, 2) ;

Σ = (10, 1, 3) ⊕ (10, 3, 1) ⊕ (15, 2, 2) ⊕ (6, 1, 1) ;

Σ = (10, 1, 3) ⊕ (10, 3, 1) ⊕ (15, 2, 2) ⊕ (6, 1, 1) . (2.3)

The components of the Higgs fields that acquire large vacuum expectation values (vevs)

appear as the first term in each right-hand side (rhs) of eqs. (2.3); in addition, the (1, 1, 3)

component of A is also assumed to obtain a nonzero vev [9].

We also need Higgs superfields in the 10–dimensional representation of SO(10) to

provide the Higgs doublet superfields of the Minimal Supersymmetric Standard Model

(MSSM) that break the electroweak gauge symmetry. Minimal SO(10), with a single

10, would require all Yukawa couplings of one generation to unify, which leads to wrong

predictions for ratios of quark and lepton masses.1 Introducing G422D as symmetry group

between MX and MC aggravates this problem, since it predicts Yukawa unification at scale

MC if both MSSM Higgs doublets reside in a single (1,2,2) of SU(4)C ×SU(2)L ×SU(2)R.

We therefore include two such superfields.2 We assume that the additional bidoublet

obtains a mass through the coupling to the (1, 3, 1) of A, in which case its mass will be of

order M2 = M2
R/MX [9].

Let us discuss the structure of the matter Yukawa couplings in a bit more detail.

Here we are only interested in third generation couplings, which can be large enough to

1This prediction can be made to work for the third generation, if the ratio of MSSM Higgs vevs tanβ is

large and sfermion masses lie well above a TeV [12]; however, they will fail for the first two generations.
2The unification of gauge couplings with an arbitrary number of such superfields is discussed in [9].
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affect the weak-scale sparticle spectrum significantly. The Yukawa unification conditions

we will derive will not work for first and second generation fermions. We assume that

this problem is solved by introducing some more complicated flavor structures, e.g. via

non-renormalizable terms, without introducing additional large couplings.

At energy scales below M2 we have the well-known MSSM superpotential,

WYuk,MSSM = YuU cQHu + YdD
cQHd + YeE

cLHd , (2.4)

where Q and L are the quark and lepton doublets, U c, Dc and Ec the corresponding

singlets, and Hu and Hd the two Higgs doublet superfields. In eq. (2.4) we have suppressed

all generation and group indices.

At energies above M2 the second pair of Higgs doublets as well as some parts of the

SU(2) triplet Higgs superfields (see table 1) become accessible. A general ansatz for the

matter superpotential is then

WYuk,gen =

2
∑

i=1

(Yu,iU
cQHu,i + Yd,iD

cQHd,i + Ye,iE
cLHd,i) +

1

2
YNEcδ̄−−Ec . (2.5)

The last term in eq. (2.5) results from the interaction giving rise to large Majorana masses

for the right-handed neutrino superfields (see below). The light Higgs doublets Hu, Hd are

mixtures of the Higgs superfields appearing in eq. (2.5):

Hu = cos ϕuHu,1 + sin ϕuHu,2 ;

Hd = cos ϕdHd,1 + sin ϕdHd,2 . (2.6)

At scales above MR, U c and Dc form a doublet Qc of SU(2)R; similarly, the right-handed

neutrino superfield N c and Ec form an SU(2)R doublet Lc.3 Moreover, the Higgs superfields

Hu,i, Hd,i are grouped into two bidoublets Φi. Finally, at this scale all members of the

SU(2)R triplet Higgs superfield δ̄ become accessible. The superpotential (2.5) then becomes

WYuk,3122 =

2
∑

i=1

(Yq,iQ
cQΦi + Yl,iL

cLΦi) +
1

2
YNLcδ̄Lc . (2.7)

The last term in eq. (2.7) gives rise to large Majorana masses for the N c once the neutral

component of the SU(2)R triplet δ̄ ∈ Σ gets a vev. Finally, at scales above MC , Q and

L are unified into F in the (4,2,1) representation of G422, while Qc and Lc join to form

F c in the (4,1,2) representation. One is then left with a single Yukawa coupling per

Higgs bidoublet,

WYuk,422 =
2

∑

i=1

YiF
cFΦi +

1

2
YN

(

F cΣRF c + FΣLF
)

, (2.8)

where ΣR and ΣL are in the (10,1,3) and (10,3,1) representation, respectively, of

SU(4)C × SU(2)L × SU(2)R; the last term in eq. (2.8) also has to have coupling YN due to

the discrete D symmetry.

3Note that Qc and Lc are independent left-chiral superfields, not the charge conjugates of Q and L.
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As a first simplification, let us work in the basis where Y2 = 0. This can always be

accomplished by a unitary rotation between the two Φi. Since superpotential couplings

renormalize multiplicatively, this choice is renormalization scale invariant. It is then easy

to see that, through the matching conditions at MC , Yq,2 = Yl,2 = 0 in eq. (2.7); similarly,

matching at scale MR implies Yu,2 = Yd,2 = Ye,2 = 0 in eq. (2.5). The sums in eqs. (2.5)

and (2.7) thus also collapse to single terms. Inserting eqs. (2.6) into eq. (2.5) then leads to

the following matching conditions for the MSSM Yukawa couplings at scale M2:

Yu,1 = Yu/ cos ϕu ; Yd,1 = Yd/ cos ϕd ; Ye,1 = Ye/ cos ϕd . (2.9)

We can get phenomenologically acceptable couplings only if ϕu 6= ϕd.

Note that the high-scale couplings Yf,1 are always larger than or equal to the low-scale

(MSSM) couplings Yf (f = u, d, e). On the other hand, we know that in the MSSM the top

Yukawa coupling is already fairly close to its upper bound imposed by the requirement that

it remains perturbative up to very large scales. Eq. (2.9) therefore implies that | cos ϕu| ≃ 1.

For definiteness we therefore set

cos ϕu = 1 , (2.10)

i.e. ϕu = 0. This minimizes Yu,1; we will see shortly that it also minimizes all other MSSM

matter Yukawa couplings above scale M2. These couplings appear with positive signs on

the right-hand side of the RGE for the new coupling YN . The choice (2.10) therefore

maximizes the upper bound on YN (MR) that can be derived from the requirement that

this coupling remains perturbative up to MX . We will see below that this in turn minimizes

the lower bound on the mass of the light physical neutrino for fixed MR.

Eq. (2.7) implies that Yu,1(MR) = Yd,1(MR) ≡ Yq,1(MR). This is compatible with

eqs. (2.9) and (2.10) only for

cos ϕd =
Yd(M2)

Yu(M2)

[

g2
1(MR)

g2
1(M2)

]1/60

; (2.11)

the last factor in eq. (2.11) accounts for the different RGE running of Yu,1 and Yd,1 caused

by the different hypercharges of the U c and Dc superfields. Since this factor is quite close to

unity, eqs. (2.9)–(2.11) imply that Yd,1 and Yu,1 are very similar. Since even in the MSSM

the bottom and tau Yukawa couplings become similar at large energy scales, eq. (2.11)

implies that all third generation Yukawa couplings will be comparable to the top Yukawa

coupling at all scales above M2. In the given framework this is inescapable, unless we

introduce additional heavy superfields which mix with the MSSM matter fields.

At the SU(4)C breaking scale Yq,1 and Yl,1 are unified into the single coupling Y1. The

unification of the bottom and top coupling can always be achieved through an appropriate

choice of ϕd; however, the unification of the bottom and tau Yukawa couplings is a nontrivial

constraint. This prediction is similar to that of minimal SU(5). In a scenario without

intermediate scales, the tau Yukawa coupling at scale MX is typically a bit larger than

the bottom coupling. In our case unification should happen at MC < MX , which reduces

the difference between the two couplings at their putative unification scale. On the other

hand, above the scale M1 < MC the SU(3)C coupling is larger in our scenario than in the

– 6 –
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MSSM. This increases the RG running of Yb. The two effects largely cancel. As a result,

we find that Yτ (MC) exceeds Yb(MC) by typically 10 to 20%. We blame this on threshold

effects — table 1 shows that quite a few new fields attain masses of order MC — and/or

on the additional physics required to reproduce masses and mixing angles of the lighter

SM fermions. As a practical matter, we set

Y1(MC) =
Yl,1(MC) + Yq,1(MC)

2
. (2.12)

The superpotential (2.7) generates neutrino masses through the celebrated (“type I”)

see-saw formula [3],4

mν =
m2

D

MN
=

(Yl,1〈H
0
u〉)

2

YN 〈σ〉
. (2.13)

Here σ ∈ (10,1,3) ∈ Σ is the neutral component of the SU(2)R triplet Higgs boson.5

Note that the neutrino Dirac Yukawa coupling is related to that of charged leptons by

SU(2)R, which in turn is related to the (top) quark Yukawa coupling by SU(4)C symmetry,

as described above. We assume here that the YN are (mildly) hierarchical, so that only the

third generation coupling is large enough to effect the weak-scale spectrum significantly

via the RGE.

For given MR = 〈σ〉 and light neutrino mass mν , eq. (2.13) can then be used to

determine the value of YN at the GUT scale. We vary mν between 0.2 and 0.4 eV. Note

that smaller values of mν lead to a larger coupling YN .

The occurrence of fields that are not part of the MSSM at mass scales well below MR

is crucial. As well known, in the MSSM all three gauge couplings (almost) meet at an

energy scale near 2 · 1016 GeV [13]. Without additional fields that are lighter than MR it

would not be possible to modify the running of the gauge couplings such that intermediate

scales, and hence energy ranges where the symmetry group is larger than GSM but smaller

than the GUT group, can occur. We will analyze the running of the gauge couplings in

more detail in section 4.

We will see in section 4 that the lightest new particles, with mass M2 ∼ M2
R/MX , are

still much too heavy to directly lead to visible effects at collider or rare decay experiments.

Nevertheless their existence affects the renormalization group equations (RGE) describing

the running of the masses of all superparticles and Higgs bosons. The one-loop RGE for

Yukawa couplings and soft breaking parameters that hold for different ranges of energies

are listed in the appendix. In order to compare with the frequently studied [14] mSUGRA

or cMSSM scenario, we assume universal boundary conditions, as already noted in the

Introduction.

2.2 The numerical calculation

The RGE listed in the appendix are too complicated to allow an analytical solution. In-

stead, we incorporated them into the code SOFTSUSY2.0 [15]. This program computes the

4Note that there is no quartic scalar coupling which could lead to a “type II” seesaw contribution.
5The field δ̄0 listed in table 1 is the physical remnant of σ after G3122 → GSM symmetry breaking.
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weak-scale MSSM spectrum by iteratively solving the RGE, starting from universal bound-

ary conditions for the soft breaking parameters. An iterative treatment is necessary since

many parameters are fixed at the weak scale, rather than the GUT scale. These include

the three (MS)SM gauge couplings, the masses of SM matter fermions,6 the mass of the Z

boson, and the ratio tan β of vevs of the two MSSM Higgs bosons. We use one-loop RGE

throughout, but include important weak-scale threshold corrections; these are known to

change the physical masses of third generation fermions significantly, in particular at large

tan β [16]. Note that the program implements radiative breaking of the electroweak gauge

symmetry [17], again including important weak-scale threshold corrections.

At the intermediate scales M1, M2, MR and MC (some of) the RGE have to be

changed. In the discussion of Yukawa couplings we described how to pick the appropriate

high-scale couplings, given the low-energy couplings. This procedure is applicable when

going from low to high energies. When going in the opposite direction, we use the same

matching conditions, employing the values of cos ϕd and the ratio of Yl,1(MC)/Yq,1(MC)

determined from the previous RG running from low to high energies to fix the values of

low-scale Yukawa couplings. The matching of gauge couplings and soft breaking terms

directly follows from the group structure, and will be discussed in section 4.1 and in the

appendix, respectively

The output of SOFTSUSY is passed on to the program micrOMEGAs 1.3.7 [18], which

computes the Dark Matter (DM) relic density as well as the BR(b → sγ) and δaµ, the

anomalous magnetic moment of the muon (see below).

3. Accelerator and cosmological constraints

In this section we describe the constraints we impose on the model.

3.1 Electroweak symmetry breaking and tachyons

As mentioned earlier, electroweak symmetry breaking (EWSB) is incorporated into

SOFTSUSY. Technically, it solves equations that allow to express µ2 and the bilinear Higgs

soft mass parameter Bµ in terms of MZ and the ratio of vevs tan β. However, these equa-

tions sometimes formally lead to µ2 < 0, which indicates that EWSB is not possible for

the given set of input parameters. For reasons that will become clear shortly, here we

are mostly interested in solutions with large tan β. In this case EWSB is possible iff the

(properly threshold corrected) value of the squared soft breaking mass of the up-type Higgs

boson at the weak scale is negative, m2
Hu

(MSUSY) < 0.

3.2 Constraints from collider searches

As in mSUGRA, the most important constraints are those on the masses of the lightest

Higgs boson and the lightest chargino. In combination, they imply that constraints on the

masses of strongly interacting sparticles [19] are automatically satisfied.

6Only the masses of third generation fermions are kept, since the Yukawa couplings in the first and

second generation are too small to significantly affect the evolution of the sparticle masses.
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We interpret the limit MHSM
> 114.4 GeV, which comes from searches for e+e− →

ZH0, as imposing a lower mass on the mass of the lighter CP-even Higgs boson of

the MSSM,

Mh > 111 GeV , (3.1)

where we allowed for a ∼ 3 GeV theoretical uncertainty [20] in the calculation of mh. We

also require

mχ̃±
1

> 104 GeV , (3.2)

since scenarios allowing chargino masses significantly below the highest LEP beam energy

cannot be realized in our scenario: these scenarios all require the presence of sneutrinos with

mass near or slightly below that of the chargino, and scenarios where both the sneutrino

and χ̃±
1 have mass below the limit (3.2) violate the Higgs constraint (3.1).

3.3 Branching ratio of b → sγ

In the SM, flavor changing neutral currents (FCNC) are absent at tree level. Thus, the

radiative B → Xsγ decay is mediated by loops containing up-type quarks and W bosons.

As well known [21], SUSY loop contributions can be comparable to those from the SM.

Therefore, the measurement of the branching ratio for this decay, performed by CLEO,

Belle and BaBar [22],

B(b → sγ) = (355 ± 24+9
−10 ± 3) × 10−6 (3.3)

can be used to constrain the parameter space of our model. The first error in (3.3) includes

statistical, systematic, extrapolation and b → dγ contamination errors, while the last two

are estimated to be the difference of the average after varying the central value of each

experimental result by ±1σ. To be conservative, we take the linear sum of the errors, since

the calculation strongly depends on the assumptions of the boundary conditions. Even

minor deviations from strict universality, for example due to the running between MX and

MP l [23, 24], can have very large effects [25] .

As mentioned above, we used micrOMEGAs 1.3 [18] to calculate the branching ratio.

Therein, the SM contribution is included up to the NLO, while the SUSY contribution

to the LO, assuming minimal flavor violation (i.e. the only source of flavor violation at

the weak scale is in the CKM matrix) [26]. Hence, only contributions from charged Higgs

and top quarks, and charginos and stops are included. These contributions are indeed

usually by far the dominant ones if universal boundary conditions are assumed [27], as in

our analysis.

3.4 The anomalous magnetic moment of the muon

The anomalous magnetic moment of the muon is one of the most precisely calculated and

measured quantities. There is an about 3σ discrepancy between the SM prediction based

on data from e+e− annihilation into hadrons and the experimental value. While this is

still somewhat controversial – an SM prediction which instead makes use of τ decay data

plus some assumptions is in fair agreement with the data — we here want to investigate

the parameter space of our model that allows to explain this discrepancy.

– 9 –



J
H
E
P
1
2
(
2
0
0
8
)
0
9
5

The world average, dominated by data from the E821 collaboration at BNL, is [19]

aexp
µ =

gµ − 2

2
= (11659208.0(5.4)(3.3)) × 10−10 . (3.4)

The theoretical value [28] is calculated as the sum of (i) pure QED contributions including

the diagrams of virtual photon, vacuum polarization (VP) from e, µ and τ , and leptonic

light-by-light scattering, (ii) hadronic contributions including VP from quarks, most re-

liably estimated using e+e− → hadrons data, and hadronic light-by-light scattering, and

(iii) electroweak contributions. The resulting SM prediction is [19]

atheory
µ = (116591788(2)(46)(35)) × 10−11 . (3.5)

Demanding that supersymmetric loops, involving smuons and neutralinos or smuon neu-

trinos and charginos, lead to agreement between theory and experiment at the 2σ level

thus implies

12.0 × 10−10 < δaµ,SUSY < 46.4 × 10−10 . (3.6)

We use micrOMEGAs to calculate δaµ,SUSY.

3.5 Dark matter relic density

We assume that all cosmological Dark Matter (DM) consists of lightest neutralinos. This

implies that χ̃0
1 has to be the lightest superparticle (LSP); this imposes a constraint on the

parameter space of our model.

Far more important is the requirement that the thermal χ̃0
1 relic density, calculated

using micrOMEGAs under the usual assumptions of the minimal cosmological model [29],

reproduces the value derived from the WMAP 3-year data [30] and other observations

pertaining to structure formation in the universe:

0.097 < ΩDMh2 < 0.113, at 68% CL . (3.7)

Here ΩDM is the DM mass density in units of the critical (closure) density, and h is the

Hubble constant in units of 100 km/(s·Mpc). As we will see below, this provides the most

stringent constraint on the parameter space. This is not surprising, given the small size of

the error bars in (3.7).7

4. Results

We are now ready to present some results. We begin with an analysis of the running of the

gauge couplings, which determines the values of our intermediate scales. We then discuss

analytical results for first and second generation sfermion as well as gaugino masses, before

analyzing the ratios of (s)particle masses that are most relevant for the calculation of the

DM relic density. We will conclude this section with a survey of the parameter space of

the model.

For the top quark mass, we have taken mt = 170.9 GeV, as has recently been measured

at the Tevatron [32].

7Recently the WMAP 5 year data have been released [31]. The resulting range for ΩDMh2 is very similar

to that of eq. (3.7).
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Energy range b
(k)
1 b

(k)
2 b

(k)
3

MZ < Q < MS −41/10 19/6 7

MS < Q < M2 −33/5 −1 3

M2 < Q < MR −12 −2 3

MR < Q < M1 −48/5 −2 3

M1 < Q < MC −48/5 −2 0

MC < Q < MX −194/5 −42 −34

Table 2: The coefficients of the beta functions of the gauge couplings of the SM gauge group, valid

at different energy scales Q.

4.1 RG analysis of the gauge couplings

The current world averages of the gauge coupling constants at scale MZ are [19]:

α1(MZ) = 0.01695, α2(MZ) = 0.03382, α3(MZ) = 0.1176 . (4.1)

Note that we use GUT normalization for the U(1) gauge coupling, i.e. our α1 exceeds the

hypercharge coupling αY in its usual normalization by a factor of 5/3. The values of these

couplings at different energies are determined by RGE; to one-loop order, these can be

written as
dαi

dt
= −

αi

2π
bi, (i = 1, 2, 3) . (4.2)

Here t = ln(Q/Q0), where Q0 is some reference energy scale. Note the minus sign in

eq. (4.2); in this convention, a positive bi corresponds to an asymptotically free gauge

coupling. The values of the bi depend on which particles are “active” at a given energy

scale Q; in the usual step function approximation of integrating out heavy particles, we

treat all particles with masses < Q to be (fully) active at scale Q.

This leads to the values of the bi listed in table 2, which we adapted from ref. [9]. Note

that we list the coefficients that allow to describe the running of the three factor groups of

the SM gauge group. The SU(2)L factor remains independent up to scale MX , i.e. the third

column of table 2 always describes the running of the coupling of an SU(2) group. Recall

that above MC , SU(2)L and SU(2)R have the same coupling, since the discrete symmetry

D is exact; the coefficient b
(5)
2 therefore also describes the running of the SU(2)R coupling.

Moreover, at scale MC the strong interactions get embedded into SU(4)C , with boundary

condition g3(MC) = g4(MC). The coefficient b
(5)
3 therefore describes the running of the

SU(4)C gauge coupling, which is the same as the running of the coupling of the SU(3)C
subgroup of SU(4)C at Q ≥ MC .

The fate of the U(1)Y factor of GSM is a bit more complicated. At scale MR it gets

embedded into SU(2)R ×U(1)B−L, with matching condition α−1
1 = 2/(5αB−L)+3/(5α2R).

The U(1)B−L factor in turn gets absorbed into SU(4)C at scale MC , i.e. αB−L(MC) =

α4(MC). Although the hypercharge coupling is thus “spread” over two different gauge

couplings for Q ≥ MR, its running can still be described by eq. (4.2), with coefficient listed

in table 2.

– 11 –
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Figure 1: The values of the intermediate scales MR and MC , as function of the inverse of the

SO(10) coupling αU . Here we took MS = 1TeV as sparticle mass scale.

Eqs. (4.1) and (4.2), together with the coefficients b
(k)
i listed in table 2, allow us to

predict the values of the gauge couplings at all Q ≥ MZ . Of course, the three gauge

couplings of the (MS)SM are supposed to meet at scale MX in our model. This leads to

two independent constraints. On the other hand, the intermediate scale MR and MC are

free parameters of our model; the scales M1 and M2 are derived quantities, as described

in table 1. For given value of MX the two independent unification conditions can thus be

solved for MR and MC . The running of any one of the three (MS)SM gauge couplings

can then be used to determine the value of the SO(10) gauge coupling αU . Notice that

this procedure will work for any assumed value of MX , i.e. it still leaves one parameter

undetermined. We refer the reader to ref. [9] for a further discussion of the unification

condition, including explicit solutions of the RGE of the gauge couplings.

In figure 1 we show one-loop predictions for the intermediate scales MR and MC , as

well as the value of MX , as function of 1/αU . We see that smaller values of MX correspond

to larger values of αU . The reason is that decreasing MX increases the ratios MX/MR and

MX/MC . Table 2 shows that all bi are large and negative for Q > MC ; recall that this

corresponds to gauge couplings increasing with energy. A large MX/MR means that these

beta-functions are valid over a large range of energies, leading to a large value of αU .

On the other hand, proton decay through dimension 6 operators conservatively requires

MX ≥ 3 · 1015 GeV. Figure 1 shows that this corresponds to αU ≃ 1/13.5, safely in the

perturbative region (significantly smaller than α3(MZ), for example).

Since the purpose of our paper is to study the influence of the intermediate scales on

the low-energy spectrum, we take this minimal value of MX as our default choice. The
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i . The curves at the top [middle, bottom] are for

the U(1)Y [SU(2)L, SU(3)C ] couplings. Solid and dashed curves show results for one– and two-loop

RGE, respectively.

intermediate scales are then found at

MR = 1013.75 GeV , MC = 1014.72 GeV . (4.3)

Increasing MX reduces the impact of the intermediate scales. At MX ≃ 1015.8 GeV, corre-

sponding to αU ≃ 1/21, the scales MR and MC coincide. When MX is increased to about

1016.6 GeV, MC in turn coincides with MX . At that point no intermediate scales are left,

i.e. this limit reproduces the usual MSSM. Higher values of MX are not possible. By vary-

ing MX between 1015.5 GeV and 1016.6 GeV we can thus smoothly turn on the intermediate

scales and study their impact on weak-scale physics.

The rapid increase of the gauge couplings at Q ≥ MC can also be seen in figure 2,

which shows the running of the gauge couplings as function of the energy scale for our

default set of parameters. The solid lines show the predictions from the one-loop RGE we

have used so far, whereas the dashed curves are based on two-loop RGE [33] (ignoring,

however, the subdominant contributions from Yukawa couplings to the running of the

gauge couplings). Evidently using two-loop RGE increases the intermediate scales for this

value of MX , making the model more mSUGRA-like. However, an analysis based on two-

loop RGE should also treat the (rather numerous, in our case) threshold corrections more

carefully. So far we have assumed that all (s)particles whose masses are of the order of

a given scale, as listed in table 1, have exactly that mass. This will not be true in many

cases. However, the exact masses will depend on many unknown couplings describing

interactions of these superheavy fields. A proper treatment of threshold corrections would
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therefore introduce many new free parameters. Since threshold and two-loop effects are

generically of similar magnitude [33], we assume that there are combinations of parameters

where an analysis including two-loop and threshold effects leads to similar results as the

one-loop analysis. The use of one-loop beta functions has the practical advantage that the

equations determining MR and MC can easily be solved analytically [9].

4.2 Analytical results

At the one-loop level, the gaugino masses evolve in the same way as the squared gauge cou-

plings do. Therefore, the ratios of weak-scale gaugino masses are the same as in mSUGRA,

i.e. M1 : M2 : M3 ≃ 1 : 2 : 6.8 This follows from the fact that the three MSSM gauge

couplings are identical at MX , and have their measured values (4.1) at scale MZ . These

ratios are therefore independent of the intermediate scales.

However, for fixed M1/2 the weak-scale gaugino masses are now much smaller than in

mSUGRA, since the ratios αi(MZ)/αU are much smaller, as shown in figure 2. Writing

Mi(MSUSY) = ciM1/2 (i = 1 , 2 , 3) , (4.4)

we have

c1 ≃ 0.23 , c2 ≃ 0.46 , c3 ≃ 1.4 , (4.5)

for MSUSY ∼ 1 TeV; these are nearly two times smaller than the corresponding coefficients

in mSUGRA [10].

The RGE for the masses of first and second generation sfermions, whose Yukawa

couplings are negligible, can also be solved analytically [10]. Writing9

m2
f̃
(MSUSY) = m2

0 + cf̃M2
1/2 , (4.6)

we have

cẽR
≃ 0.15 , cl̃L

≃ 0.21 , cq̃ ≃ 1.16 . (4.7)

Here ẽR and l̃L stands for U(1)Y singlet and doublet sleptons, respectively, while q̃ stands

for an average first or second generation squark; as in mSUGRA, SU(2)L doublet squarks

are slightly heavier than singlet squarks. We checked that the analytical and numerical

calculations of m2
ẽR

match within 0.1%. Note that the coefficient cẽR
is numerically almost

the same as in mSUGRA [10]. This is due to a cancellation of two effects. On the one hand,

ẽR is a non-singlet under both SU(2)R and SU(4)C , giving rise to new gauge contributions

to its mass at scales above MR and MC , respectively, which increase cẽR
. On the other

hand, we saw that for fixed M1/2 the gaugino masses at scales Q < MX are smaller than in

mSUGRA, which reduces all cf̃ . The latter effect is dominant for all fields that transform

non-trivially under either SU(2)L or SU(3)C . As a result, the mass difference between

8These are running masses. The on-shell masses differ by weak-scale threshold corrections [16], which

are included in SOFTSUSY.
9The running weak-scale sfermion masses also receive small D−term contributions, which we omit in the

following discussion, but include in the numerical analysis. In addition, the physical (pole) masses again

differ from the running masses by threshold corrections [16], which are included in SOFTSUSY.
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SU(2)L singlet and doublet sleptons is significantly smaller than in mSUGRA; recall that

the SU(2)L doublet sleptons are singlets under SU(2)R. Therefore, once the sparticle mass

differences are measured at the LHC, the mass ratio of left- and right- selectrons or smuons

will clearly distinguish our model from mSUGRA.

Note that if we apply the universal boundary conditions at some energy scale Q > MX ,

the sfermion masses obtain additional contributions due to SO(10) gauge interactions.

These increase the values of all cf̃ by the same amount, since all sfermions reside in the 16

of SO(10); this additional contribution would thus be relatively most important for ẽR [34].

However, since we need large Higgs representations to realize the breaking chain (1.1), the

SO(10) gauge coupling αU hits a Landau pole soon after the unification scale [9]. Hence

we expect some new, possibly strongly interacting, physics to occur just above MX . The

range of energies where SO(10) RGE are applicable is therefore probably quite small.

From eqs. (4.4)–(4.7) we can derive lower bounds on the ratios of sfermion to gaug-

ino masses. Of particular interest for the calculation of the Dark Matter relic density is

the relation
mẽR

(MSUSY)

|M1|(MSUSY)
>∼ 1.68 . (4.8)

In mSUGRA, the lower bound, which is saturated for M2
1/2 ≫ m2

0, is instead slightly below

unity. This is important, since it implies that for fixed m0 and increasing M1/2, one will

eventually reach a gaugino mass such that mẽR
= mχ̃0

1
, leading to strong χ̃0

1 − ẽR co-

annihilation. The bound (4.8) implies that this never happens in our scenario. However,

as in mSUGRA the lighter τ̃ mass eigenstate τ̃1 can be significantly lighter than ẽR.10 We

will see later that χ̃0
1− τ̃1 co-annihilation remains possible in our model. However, eq. (4.8)

already indicates that the parameter space where this can happen is (even) more limited

than in mSUGRA.

Our model also predicts
ml̃L

(MSUSY)

|M2(MSUSY)|
>
∼ 1 , (4.9)

which means that χ̃0
2 and χ̃±

1 decays into SU(2)L doublet sleptons will be strongly sup-

pressed. Hence, our model will be ruled out if, for instance, the on-shell decay proceeding

via χ̃0
2 → l̃±L l∓ is observed at the LHC. In contrast, in mSUGRA SU(2)L doublet sleptons

can be some 15% lighter than SU(2)L gauginos. On the other hand, the bound

mq̃(MSUSY)

|M3(MSUSY)|
>∼ 0.77 (4.10)

is very similar to that in mSUGRA. It still leaves room for two-body decays of gluinos into

first or second generation squarks.

4.3 Mass ratios

In this section we show numerical results for some (ratios of) masses that are important for

the determination of the thermal χ̃0
1 relic density. We focus on masses whose weak-scale

10For this reason, usually the most important co-annihilation channel is χ̃0
1 − τ̃1 co-annihilation [35]:

scenarios giving mχ̃0

1

= mẽR
are already excluded, since here τ̃1 would be the LSP.
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Figure 3: Squared weak-scale running masses in GeV2 of (a) t̃ and τ̃ sfermions and (b) the up-type

Higgs boson, as function of the neutrino mass. The other input parameters are: m0 = 1.5TeV,

M1/2 = 0.9TeV, A0 = 0, tanβ = 40 and µ > 0.

values are affected by the potentially large Yukawa couplings in the theory. We saw in

section 2.1 that all third generation Yukawa couplings involving Higgs doublets are quite

large at energies ≥ M2; at energies ≥ MR this includes the new neutrino Yukawa coupling

Yν , which is equal to that of the charged lepton by SU(2)R invariance. The coupling YN ,

which determines the Majorana masses of the heavy neutrinos, can also be sizable. Recall

that YN is related to the light neutrino mass and MR = 〈σ̄〉 through eq. (2.13).

Yukawa couplings tend to reduce weak-scale scalar masses for fixed m0 and M1/2. YN

begins to act — on the mass of τ̃R — at scale M2; at the same scale, the bottom and

tau couplings become large even if tan β is not large, see eq. (2.11). At energies above

MR the neutrino coupling Yν becomes active, reducing the weak-scale masses of τ̃L and

of the Higgs boson Hu. Above MC , all weak-scale third generation sfermion masses will

be reduced by YN . We therefore expect the difference between first and third generation

weak-scale sfermion masses to be larger than in mSUGRA. This effect should be strongest

for τ̃R and τ̃L. The reduction should be more pronounced at small and moderate tan β,

since for large tan β all third generation Yukawa couplings are sizable even in the MSSM.

This is illustrated in the left frame of figure 3, which shows the dependence of the

soft-breaking masses of t̃L, t̃R, τ̃L and τ̃R as a function of the mass mν of the heaviest light

neutrino. Recall that this mass is proportional to 1/YN , i.e. smaller mν correspond to

larger YN , and hence to smaller weak-scale sfermion masses.

On the other hand, the right frame in figure 3 shows that the running soft breaking

mass of the Higgs bosons with positive hypercharge increases with decreasing mν . We just

saw that larger values of YN reduce m2
t̃L

and m2
t̃R

at all energies below MX . This reduces

the term ∝ Y 2
t . Since this term drives m2

Hu
to smaller or even negative values, reducing

its size leads to an increase of the weak-scale value of m2
Hu

. Recall that m2
Hu

(MSUSY) <
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Figure 4: The ratio of third generation sfermion masses to the mass of the lightest neutralino

as function of m0, for mν = 0.4 eV (left), mν = 0.2 eV (right). The values of the other input

parameters are M1/2 = 1.2TeV, A0 = 0, tan β = 40 and µ > 0.

0 is required to achieve electroweak symmetry breaking with tan β ≫ 1. This figure

therefore implies that the parameter space permitting radiative breaking of the SU(2) ×

U(1)Y symmetry will be smaller for smaller values of mν .

The Yukawa coupling YN also reduces the value of the soft breaking mass of Σ̄, whose

vev is responsible for the masses of the heavy neutrinos, and contributes to the SU(2)R ×

U(1)B−L → U(1)Y breaking. Since this occurs at a scale MR ≫ MSUSY, we introduced

a field Σ, which permits to keep the SU(2)R and U(1)B−L D−terms much below M2
R.

However, since YN 6= 0 implies m2
Σ̄
(MR) < m2

Σ(MR), 〈Σ〉 < 〈Σ̄〉. Since 〈Σ̄〉2 − 〈Σ〉2 ∝

(m2
Σ − m2

Σ̄
) ∝ M2

SUSY [36], this effect does not spoil the hierarchy MR ≫ MSUSY, but it

does give new non-vanishing contributions to the masses of sfermions and Higgs bosons.

However, they are subdominant for most of the parameter space, partly due to the small

splitting between MR and MC , and partly because m2
Σ and m2

Σ̄
receive identical, large

gauge contributions, in particular for Q > MC where Σ and Σ̄ are embedded in (anti–

)decuplets of SU(4)C . In fact, we found that the ratio (m2
Σ − m2

Σ̄
)/m2

Σ is, at most, a few

%. Hence, these new D−term contributions can be ignored.

Figure 4 shows the dependence of the ratios mt̃L,R
/mχ̃0

1
and mτ̃L,R

/mχ̃0
1
, taken at scale

Q = MSUSY, on m0. For m2
0 ≪ M2

1/2 the stop squarks are significantly heavier than the stau

sleptons. This qualitative behavior is the same as for first and second generation squarks,

see eq. (4.7). On the other hand, if m0 >
∼ M1/2 and relatively small YN (left frame), mt̃R

can be smaller than mτ̃L,R
, since the top Yukawa coupling is significantly larger than that

of the τ lepton.

The right frame of figure 4 shows that increasing YN reduces the dependence of third

generation sfermion masses on m0. In fact, for mν = 0.2 eV we observe a sort of “focus

point” [37] for mt̃R
, i.e. mt̃R

(MSUSY) becomes almost independent of m0. This implies that
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there is no focus point behavior of m2
Hu

(MSUSY), i.e. this soft breaking parameter, which

largely determines electroweak symmetry breaking for tan2 β ≫ 1, does depend on m0.

Hence large values of m0 will not be “natural” (by the definition employed in refs. [37]) if

YN affects the weak-scale third generation masses significantly.

The scalar masses shown in figure 4 are running masses at scale MSUSY. The physical

masses will be affected by threshold corrections and, more importantly for third generation

sfermions, by mixing between SU(2) singlets and doublets. This mixing reduces the mass

of the lighter eigenstates τ̃1 and t̃1, so that mτ̃1 < min(mτ̃L
, mτ̃R

) and similar for mt̃1
.

Nevertheless figure 4 shows that co-annihilation will usually only be possible with τ̃1. This

is similar to mSUGRA. Note, however, that figure 4 is for tan β = 40. Recall that co-

annihilation with first or second generation sfermions is not possible here, see eq. (4.8).

Moreover, comparison of the two frames of figure 4 shows that the effects of YN on the τ̃

masses are quite small if m2
0 ≪ M2

1/2. As a result, we find that τ̃ co-annihilation is possible

in our model only for tan β >∼ 27.

The left frame of figure 5 illustrates the dependence of the ratio mτ̃R
/mχ̃0 on the

GUT scale. Recall that for MX = 1016.4 GeV our model becomes indistinguishable from

mSUGRA, as far as the weak-scale spectrum is concerned. As discussed in the previous

Subsection, in the absence of new large Yukawa couplings this ratio can only become larger

as the intermediate scale is turned on. However, we saw in figure 4 that the Majorana

Yukawa coupling YN does give a large positive contribution to the RGE of mτ̃R
, reducing

its weak-scale value. These two effects clearly compete with each other. We see that even a

rather large YN , corresponding to mντ = 0.2 eV, can change mτ̃R
(MSUSY) significantly only

if MX < 1015.8 GeV; recall from figure 1 that this corresponds to the region of parameter

space where MR < MC . In this case the possibility to have τ̃1 co-annihilation obviously

strongly depends on mντ .

The right frame of figure 5 shows the ratio mA0/2mχ̃0 . This ratio needs to be close

to unity for χ̃0
1 annihilation through s−channel A0 exchange to be enhanced. We see that

reducing MX , i.e. turning on the intermediate scales, slightly increases this ratio even if

YN is small. For given m0, this can be compensated by increasing M1/2. We thus expect

the “A−funnel” [38] region to survive in our scenario, if tan β >
∼ 50 and for small YN .

Increasing YN will increase mA(MSUSY); this is analogous to the increase of m2
Hu

depicted

in the right frame of figure 3.

4.4 Regions of the (m0, M1/2) plane

In this subsection, we show the (m0,M1/2) plane of our model, indicating the regions where

the various accelerator as well as cosmological constraints discussed in section 3 are satisfied.

We scan the parameter space only up to (m0,M1/2) = (2000 GeV, 1500 GeV). Even larger

sparticle masses appear quite unnatural. The LHC should be able to probe the entire

parameter space we show [39]; recall that M1/2 = 1.5 TeV corresponds to a gluino mass

around 2 TeV in our scenario. We focus on large values of tan β. We saw in the previous

subsection that this is required both for the A−funnel and the for τ̃ co-annihilation region

in our scenario. Finally, sign(µ) is chosen positive in all plots, in accordance with the
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varied. Recall that this implies corresponding variations of the intermediate scales MC and MR,

see figure 1.
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Figure 6: Constraints on the (m0, M1/2) plane of our model. The grey areas are those excluded by

the EWSB condition or by tachyonic or too light sfermions. The region excluded by the Higgs and

chargino mass constraints is shown in bright red and the one excluded by the b → sγ constraint

in pink. The blue area satisfies the gµ − 2 constraint (3.6), while green regions satisfy the Dark

Matter constraint (3.7). Finally, black regions satisfy all constraints.

indication of an additional positive contribution to gµ; recall also that taking µ > 0 makes

it easier to satisfy the b → sγ constraint [27].

A first example, for A0 = 0 and tan β = 40, is presented in figure 6; the left (right)

frame is for small (large) coupling YN . The grey regions are mostly excluded by the
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requirement of correct electroweak symmetry breaking; in the right frame the region of

small m0 is instead excluded because τ̃1 is too light (below either the LEP limit or the

mass of χ̃0
1). As expected from the discussion of figure 3, this region is considerably larger

for large YN .

The bright red regions are excluded by the chargino search limit (3.2) or by the

limit (3.1) on the mass of the lightest CP-even Higgs boson; the latter is relevant for

M1/2
<
∼ 500 GeV, while the former excludes the narrow red strip bordering the grey region

at large m0 and large M1/2. Finally, the pink regions are excluded by the constraint (3.3)

on the branching ratio for radiative b decays. Some supersymmetric contributions to the

corresponding amplitude grow ∝ tan β. This constraint therefore becomes relevant at the

large values of tan β required to realize τ̃ co-annihilation and/or the A−funnel in our model.

Turning to observables that require a non-vanishing contribution from supersymmetric

particles, in the blue regions the constraint (3.6) from the anomalous magnetic moment of

the muon is satisfied. The corresponding diagrams are quite similar to those contributing to

b → sγ decays. In particular, some contributions again grow ∝ tan β. As in mSUGRA [14],

we find regions of the parameter space at sufficiently large M1/2 where electroweak gauginos

and sleptons are sufficiently light to give a sizable positive contribution to gµ, while (stop)

squarks are sufficiently heavy not to reduce the branching ratio for b → sγ decays too much.

Note that the red, pink and blue regions all extend to much larger values of M1/2

than in mSUGRA [14]. The reason is that the corresponding constraints probe weak-scale

(s)particle masses; we saw in eqs. (4.4)–(4.7) that a given M1/2 corresponds to much lighter

gauginos and sfermions in our scenario than in mSUGRA. Moreover, we saw in figures 3

and 4 that the additional large Yukawa couplings in our model tend to reduce weak-scale

stop masses. They also increase m2
Hu

, which leads to a reduction of |µ| via the condition of

electroweak symmetry breaking. Both effects, which become more important for smaller

mν , increase the absolute size of the stop-chargino loop contribution to b → sγ decays. This

has to be compensated by increasing m0 and/or M1/2. The b → sγ constraint is therefore

relatively more important in our scenario than in mSUGRA, especially if YN is sizable.

Note also that the region excluded because it does not permit radiative symmetry

breaking has a pronounced slope even for the larger neutrino mass, i.e. smaller coupling

YN . This shows that m2
Hu

(MSUSY) has significant dependence on m0, as remarked earlier,

i.e. there is no focusing behavior of this parameter. As expected from our discussion of

figure 3, this upper bound on m0 becomes stronger when YN is increased, i.e. when mν

is decreased. In a strip close to this excluded region we nevertheless expect the lightest

neutralino to have a large, perhaps dominant, higgsino component; this region will therefore

have a somewhat similar phenomenology as the “focus point” region in mSUGRA [37],

especially as far as Dark Matter is concerned.

Finally, in the narrow green strips the constraint (3.7) on the Dark Matter relic density

is satisfied; these strips would obviously look broader if we had indicated the 2σ allowed

region, as more commonly done. The overlap between the DM– and gµ−allowed regions is

colored in black.

In figure 6 we find two such regions. At small m0 χ̃0
1 is bino-like, and achieves a

sufficiently small relic density through co-annihilation with τ̃1. For small YN (left frame)
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Figure 7: Constraints on the (m0, M1/2) plane of our model. Parameter values and color code are

the same as in figure 6, except that tanβ has been increased to 50.

this region is strongly constrained by the bound on b → sγ decays. We saw in figure 4 that

increasing YN reduces the τ̃ masses, making it possible to find scenarios with mτ̃1 ≃ mχ̃0
1

even if M1/2 is large.

We just saw that for values of m0 not far below the upper bound imposed by elec-

troweak symmetry breaking, χ̃0
1 has a sizable higgsino component. For some range of

parameters it achieves the correct relic density mostly through annihilation into channels

involving weak gauge bosons. As in mSUGRA, this second DM-allowed region extends

to very large values of m0 and M1/2, with χ̃0
1 becoming increasingly higgsino-like (and

therefore co-annihilation with χ̃0
2 and χ̃±

1 becoming increasingly important [40].)

As in mSUGRA, tan β = 40 is not large enough to allow mA ≃ 2mχ̃0
1

if µ > 0.

Figure 7 shows that this “A−pole” region becomes accessible for tan β = 50. Sufficiently

small values of mA are only possible if the soft breaking mass m2
Hd

of the second Higgs

boson also becomes negative (and large) at the weak scale. We saw in the discussion

of figure 5 that decreasing mν will increase m2
Hu

(MSUSY). Indeed, in figure 7 we find a

well-defined A−funnel only for mν = 0.4 eV (left frame).

If we instead take mν = 0.2 eV (right frame), we find that the χ̃0
1 relic density becomes

too low in the entire allowed region of the (m0, M1/2) plane we scanned. One reason is that

increasing YN reduces µ(MSUSY), as discussed above. This increases the coupling of the

LSP to neutral Higgs bosons, in particular to A. Since for tan β = 50 the b and τ Yukawa

couplings are quite sizable, virtual A exchange diagrams become large, even though 2mχ̃0
1

is somewhat below mA. Increasing m0 increases mA, but at the same time decreases µ

even further, and therefore does not allow to achieve a DM relic density above the lower

bound in the range (3.7). Moreover, recall that reducing mν also reduces the τ̃ masses. In

addition, the very large value of tanβ considered in this figure leads to large τ̃Lτ̃R mixing,

which allows χ̃0
1χ̃

0
1 → τ+τ− annihilation through τ̃ exchange even if the initial state is
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Figure 8: Number of allowed points (by all constraints) for 1TeV < m0 < 1.5TeV; 1.1TeV <

M1/2 < 1.4TeV, with the grid 25GeV. The allowed region is very large when tan β = 49.

in an S−wave [41]. Finally, for M1/2 close to its lower bound, χ̃0
1τ̃1 co-annihilation again

becomes important. Note that this indicates that the DM-allowed region may be quite

large for some tan β between 40 and 50, and mν = 0.2 eV. Indeed, figure 8 shows that for

tan β = 49, about 50% of the points we scanned that satisfy the other constrains are also

compatible with the DM constraint.

In figure 9 we explore the effect of taking a non-zero value of A0. We see that the

value of A0 can have quite a dramatic effect on the region excluded because it does not

allow electroweak symmetry breaking. This can be understood as follows. By dimensional

arguments and the fact that scalar masses always appear as squares in the RGE, the soft

breaking mass of the up-type Higgs boson at the weak scale can be written as

m2
Hu

(MSUSY) = am2
0 + bM2

1/2 + cA2
0 + dM1/2A0 . (4.11)

The values of the coefficients a, b, c, d depend on the dimensionless couplings in the theory,

as well as (logarithmically) on MSUSY. In our model, a and d are positive while b and c are

negative. Hence increasing m0 makes EWSB more difficult, while increasing M1/2 makes

it easier if M1/2 > |A0|. This explains the qualitative feature of the regions excluded by

the EWSB constraint in figures 6 and 7.

On the other hand, if |A0| ≫ M1/2, increasing the absolute value of A0 also aids EWSB

independent of its sign. This explains why the region excluded by the EWSB constraint

becomes much smaller in the two left frames of figure 9. Figure 6 shows that, for the given

small value of YN , the EWSB constraint only excludes scenarios with m0 > M1/2 even

if A0 = 0. In the critical region |A0| = m0 is thus always sufficiently larger than M1/2.
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Figure 9: Constraints on the (m0, M1/2) plane of our model. Parameter values and color code are

the same as in figure 6, except that we now take A0 = m0 (A0 = −m0) in the top (bottom) row.

Finally, for given absolute value of A0, EWSB will be easier for negative than for positive

A0. This explains why the EWSB excluded region is significantly larger in the upper-right

frame of figure 9 than in the lower-right frame. Note also that a sizable YN decreases the

absolute size of c, since YN reduces |At| for Q > MC , see eq. (A.34)

A nonvanishing A0 also changes the regions allowed by the other constraints. In

particular, A0 < 0 increase t̃L − t̃R mixing. This has two effects. On the one hand,

it increases the radiatively corrected mass of the lightest CP-even Higgs boson, thereby

reducing the size of the red regions in figure 9. On the other hand, it increases the t̃χ̃±

contributions to radiative b → sγ decays, increasing the size of the pink regions. This latter

effect completely removes the DM-allowed region close to the EWSB-forbidden region,

where χ̃0
1 has sizable higgsino component. As a result, for A0 = −m0, only the small τ̃
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co-annihilation region survives. On the other hand, for A0 = m0 we again find sizable

DM-allowed regions at large m0; the structure in this (black) region at M1/2 ≃ 800 GeV in

the top-left frame is due to the opening of the χ̃0
1χ̃

0
1 → tt̄ channel.

5. Summary and conclusions

Supersymmetric SO(10) GUTs have become attractive extensions of the SM, especially

since the observation of the nonzero neutrino mass. However, there is a small discrepancy

between the order of the expected mass of the right handed neutrino in the seesaw mecha-

nism and the GUT scale; it can be explained in a natural way if one postulates intermediate

scales where the gauge symmetry is larger than that of the SM, but smaller than SO(10).

Therefore, in this work we chose a model [9] which gives us intermediate symmetry

breaking scale(s), and analyzed how this affects the low energy phenomenology. We found

that the relation between weak-scale and GUT-scale parameters is quite different in this

model than in the widely considered mSUGRA scenario. Perhaps more importantly, ratios

of different weak-scale masses also differ from mSUGRA. In particular, the slepton to

electroweak gaugino mass ratios are higher than in mSUGRA. As a result, co-annihilation

is only possible with the lighter τ̃ eigenstate, and only at large tan β and/or large Yukawa

coupling YN of the SM singlet neutrinos; the latter corresponds to small values for the light

neutrino masses.

Radiative electroweak symmetry breaking also is more difficult in this model than in

mSUGRA. This makes it easier to find Dark Matter allowed solutions where the lightest

neutralino has a significant higgsino component. As in mSUGRA, the location of this region

strongly depends on A0; in addition, we find a strong dependence on YN , i.e. on the light

neutrino mass. We also found that for very large tan β and large YN most of the (m0,M1/2)

plane leads to too small a χ̃0
1 relic density. As a corollary, there exist combinations of YN

and tan β where ΩDMh2 has weak dependence on m0 and M1/2; however, in this case it

depends strongly on tan β and YN . Finally, as in mSUGRA the A−pole region only exists

at large tan β; it disappears for large values of YN .

We would like to point it out that, even though our analysis is done for a specific model,

many of our results should remain qualitatively correct for other SO(10) GUT scenarios,

as long as the seesaw mechanism at an intermediate scale plays a role. In particular,

the relation between the right-handed stau mass and the Majorana Yukawa coupling YN ,

which largely determines the behavior of the co-annihilation region, does not depend on

the details of either the symmetry breaking chain or the seesaw structure. Any partial

unification above the see-saw scale also implies that YN will affect other sfermion masses,

and hence the conditions for radiative symmetry breaking.

In summary, the model we considered relates several phenomena, and can hence

be probed through a large variety of measurements, from proton decay (which imposes

limits on the GUT scale) over neutrino masses and Dark Matter physics to collider

physics. We intend to investigate characteristic features of this scenario at the LHC in

a future publication.

– 24 –



J
H
E
P
1
2
(
2
0
0
8
)
0
9
5

Acknowledgments

JMK thanks to C. S. Aulakh and M. Kakizaki for useful discussions. This work was

partially supported by the Marie Curie Training Research Network “UniverseNet” under

contract no. MRTN-CT-2006-035863, as well as by the European Network of Theoretical

Astroparticle Physics ENTApP ILIAS/N6 under contract no. RII3-CT-2004-506222. JMK

was partially supported by the Bonn-Cologne Graduate School of Physics and Astronomy.

We thank the KIAS school of physics for hospitality while part of this work was done.

A. Renormalization group equations

In this section we list all relevant one-loop renormalization group equations explicitly.

Our calculations are based on the general expressions of ref. [42]. We divide the entire

energy range between the SUSY and GUT scales into five regions, with different particles

participating in the RGE and different symmetry groups:

• Region I (MSUSY < Q < M2) : SU(3)C × SU(2)L × U(1)Y

• Region II (M2 < Q < MR) : SU(3)C × SU(2)L × U(1)Y

• Region III (MR < Q < M1) : SU(3)C × U(1)B−L × SU(2)L × SU(2)R

• Region IV (M1 < Q < MC) : SU(3)C × U(1)B−L × SU(2)L × SU(2)R

• Region V (MC < Q < MX) : SU(4)C × SU(2)L × SU(2)R × D

In the following subsections we discuss the running of the supersymmetric parameters

(gauge couplings and parameters of the superpotential) and of the soft breaking parame-

ters, respectively.

A.1 Superpotential parameters

We begin with the parameters that preserve supersymmetry. The running of the gauge

couplings is described by

d

dt
ga =

1

16π2
βgag3

a with βga =
∑

R

S(R) − 3Ca(G) . (A.1)

Here t = ln(Q/Q0), a labels the factor group, R the representation of the matter and Higgs

superfields under this group, Ca is the quadratic Casimir of this group, and the Dynkin

index S(R) is defined by Tr(tAtB) = S(R)δAB , tA,B being matrix representations of the

gauge group.

Our notation for a generic superpotential is

W =
1

6
Y ijkΦiΦjΦk +

1

2
µijΦiΦj . (A.2)

– 25 –



J
H
E
P
1
2
(
2
0
0
8
)
0
9
5

The running of the parameters appearing in (A.2) is given by

d

dt
Y ijk = Y ijp 1

16π2
γk

p + (k ↔ i) + (k ↔ j)

d

dt
µij = µip 1

16π2
γj

p + (j ↔ i) , (A.3)

where summation over repeated indices is understood. The anomalous dimensions γj
i are

given by

γj
i =

1

2
YipqY

jpq − 2δj
i g

2
αCα(i). (A.4)

In our case, the superpotential below MX has been given in eq. (2.4) for region I, in

eq. (2.5) for region II, in eq. (2.7) for regions III and IV, and in eq. (2.8) for region V.

Recall that we take Y2 = Yq,2 = Yl,2 = Yu,2 = Yd,2 = Ye,2 = 0; for the sake of simplicity

we therefore suppress the superscript 1 on the Yukawa couplings in the following. These

couplings are 3 × 3 matrices in generation space. We will write the RGE for general

matrices, although we only kept third generation couplings in our numerical analysis. We

use the general notation

d

dt
Yf =

1

16π2
βYf

;

d

dt
µ =

1

16π2
βµ , (A.5)

where f stands for any matter fermion. In the following we list these as well as the gauge

beta-functions in the five different energy regions.

A.1.1 Region I

The coefficients of the gauge beta functions are

βga = (33/5, 1,−3) for a = (1Y , 2L, 3C) , (A.6)

where we have used GUT normalization for the U(1)Y factor. The corresponding coeffi-

cients for the MSSM Yukawa couplings are

βYu = Yu(γU
U + γHu

Hu
) + γQ

QYu ;

βYd
= Yd(γ

D
D + γHd

Hd
) + γQ

QYd ;

βYe = Ye(γ
E
E + γHd

Hd
) + γL

LYe ;

βµ = µ(γHd

Hd
+ γHu

Hu
) , (A.7)

where

γE
E = 2Y †

e Ye −
6

5
g2
1 ;

γL
L = YeY

†
e −

3

10
g2
1 −

3

2
g2
2 ;
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γQ
Q = YdY

†
d + YuY †

u −
1

30
g2
1 −

3

2
g2
2 −

8

3
g2
3 ;

γU
U = 2Y †

u Yu −
8

15
g2
1 −

8

3
g2
3 ;

γD
D = 2Y †

d Yd −
2

15
g2
1 −

8

3
g2
3 ;

γHd

Hd
= tr(3YdY

†
d + YeY

†
e ) −

3

10
g2
1 −

3

2
g2
2 ;

γHu

Hu
= 3trYuY †

u −
3

10
g2
1 −

3

2
g2
2 . (A.8)

A.1.2 Region II

βga = (12, 2,−3) for a = (1Y , 2L, 3C) . (A.9)

The Yukawa coupling beta functions of the MSSM matter fields have the same form as in

Region I, but we need to introduce an RGE for YN :

βYN
= YN (γE

E + γ δ̄
δ̄ ) + γE

E YN . (A.10)

Except for γE
E the anomalous dimensions of the MSSM matter fields also remain form

invariant, and we have to introduce an anomalous dimension for δ̄−−:

γE
E = 2Y †

e Ye + Y †
NYN −

6

5
g2
1 ;

γ δ̄
δ̄ =

1

2
tr(Y †

NYN ) −
24

5
g2
1 . (A.11)

Recall that we are now dealing with the couplings Yf,1 (f = u, d, e), which are related to

the MSSM couplings Yf via eqs. (2.9)–(2.11).

A.1.3 Region III

βga = (15, 2, 6,−3) for a = (1B−L, 2L, 2R, 3C) , (A.12)

where we have again used GUT normalization for the U(1) coupling. The effective coeffi-

cient 48/5 for the running U(1)Y coupling listed in table 2 is 3
5 · 6 + 2

5 · 15, which follows

from the matching condition g−2
Y = 3

5g−2
R + 2

5g−2
B−L.

Since the underlying symmetry group is enhanced, and the matter superfields form mul-

tiplets correspondingly, their anomalous dimensions receive contributions from the heavy

gauge bosons that become active in this energy range. We switch to the notation of

eq. (2.7), i.e. we introduce Qc instead of U c and Dc, while Ec and N c are united in Lc and

Hu and Hd are united in Φ. The number of independent Yukawa couplings is thus reduced

to three:

βYq = Yq(γ
Qc

Qc + γΦ
Φ) + γQ

QYq ;

βYl
= Yl(γ

Nc

Lc + γΦ
Φ) + γL

LYl ;

βYN
= YN (γN

N + γ δ̄
δ̄ ) + γN

N YN . (A.13)
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The relevant anomalous dimensions read:

γLc

Lc = 2Y †
l Yl +

3

2
Y †

NYN −
3

2
g2
R −

3

4
g2
B−L ;

γL
L = 2YlY

†
l −

3

2
g2
2 −

3

4
g2
B−L ;

γQ
Q = 2YqY

†
q −

3

2
g2
2 −

1

12
g2
B−L −

8

3
g2
3 ;

γQc

Qc = 2Y †
q Yq −

3

2
g2
R −

1

12
g2
B−L −

8

3
g2
3 ;

γΦ
Φ = tr(3YqY

†
q + YlY

†
l ) −

3

2
g2
R −

3

2
g2
2 ;

γ δ̄
δ̄ =

1

2
tr(YNY †

N ) − 4g2
R − 3g2

B−L . (A.14)

Here we have continued to use g2 for the SU(2)L coupling, and denoted the SU(2)R coupling

with gR. Eqs. (A.14) are consistent with [43], taking the appropriate normalization.

A.1.4 Region IV

βga = (15, 2, 6, 0) for a = (1B−L, 2L, 2R, 3C) . (A.15)

Since the new massive fields becoming active in this energy range are singlets under

U(1)B−L × SU(2)R × SU(2)L, only the running of the SU(3)C group changes. Moreover,

the Yukawa coupling beta functions are those of Region III.

A.1.5 Region V

βga = (42, 42, 34) for a = (2L, 2R, 4C) . (A.16)

Since many new fields become active at Q ≥ MC , all gauge β−functions increase quite

dramatically. In GUT normalization, gB−L = g3 = g4, where g4 is the SU(4)C gauge

coupling; this explains the entries in the last row of table 2, with 194
5 = 3

5 · 42 + 2
5 · 34.

No new Yukawa couplings appear in this energy range; instead, the couplings Yq and

Yl get unified into the single coupling Y . At the same time, all MSSM matter superfields

are now in F or F c introduced in eq. (2.8); the D symmetry ensures that the anomalous

dimensions of these two superfields are the same. Moreover, the SU(2)R triplet Higgs

superfield δ̄ gets embedded into the much larger representation ΣR, and the D−partner

ΣL also appears, with identical anomalous dimensions.

Therefore eqs. (A.13) change to

βY = Y (γF
F + γΦ

Φ) + γF
F Y ;

βYN
= YN (γF

F + γΣR

ΣR
) + γF

F YN . (A.17)

The anomalous dimensions appearing in eqs. (A.17) are:

γF
F = 2Y †Y +

15

4
Y †

NYN −
3

2
g2
R −

15

4
g2
4 ;

γΦ
Φ = tr(4Y Y †) −

3

2
g2
R −

3

2
g2
2 ;

γΣR

ΣR
=

1

2
tr(YNY †

N ) − 4g2
R − 9g2

4 . (A.18)
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A.2 Soft SUSY-breaking parameters

We write the part of the Lagrangian that softly breaks supersymmetry as

LSB = −
1

6
hijkφiφjφk −

1

2
bijφiφj −

1

2
(m2)jiφ

∗iφj −
1

2
Maλaλa + h.c. (A.19)

We assume universal boundary conditions,

hijk = Y ijkA0 ;

(m2)ji = m2
0δ

j
i ;

Ma = M1/2 ∀a , (A.20)

which hold at scale Q = MX . Here Y ijk are the superpotential couplings introduced in

eq. (A.2).

The β−functions of the soft breaking parameters are defined by

d

dt
hijk =

1

16π2
βijk

h ;

d

dt
bij =

1

16π2
βij

b ;

d

dt
(m2)ji =

1

16π2
βm2

j
i ;

d

dt
Ma =

1

16π2
2g2

aM
2
aβga . (A.21)

Here βga are the coefficients of the gauge β−functions introduced in eq. (A.1). The other

β−functions appearing in eqs. (A.21) can be written as11

βijk
h =

1

2
hijlYlmnY mnk + Y ijlYlmnhmnk − 2(hijk − 2MaY

ijk)g2
aCa(k)+(k ↔ i)+(k ↔ j) ;

βij
b =

1

2
bilYlmnY mnj + +µilYlmnhmnj − 2(bij − 2Maµ

ij)g2
aCa(i) + (i ↔ j) ;

βm2
j
i =

1

2
YipqY

pqn(m2)jn +
1

2
Y jpqYpqn(m2)ni + 2YipqY

jpr(m2)qr + hipqh
jpq

−8δj
i MaM

†
ag2

aCa(i) + 2g2
a(tA

a )ji tr(t
A
a m2) . (A.22)

The last term in βm2 can be nonzero only for U(1) group factors. In the case at hand it is

therefore either proportional to

SY = m2
Hu

− m2
Hd

+ tr[m2
Q − m2

L − 2m2
u + m2

d + m2
e] (A.23)

or to

SB−L =
1

2
(6m2

Σ
− 6m2

Σ + tr[2m2
Q − 2m2

Qc − 2m2
L + 2m2

Lc ]) . (A.24)

For better readability, in eqs. (A.23) and (A.24), as well as in subsequent equations, we have

omitted the tildes on the subscripts of the squared scalar soft breaking masses; moreover,

11We suppress terms that can be nonzero only in the presence of complete gauge singlet chiral superfields.

– 29 –



J
H
E
P
1
2
(
2
0
0
8
)
0
9
5

we use mΣ and mΣ for the soft mass of whatever parts of the original Σ and Σ superfields

are active in a given energy range. Note that both SY and SB−L evolve homogeneously.

Since the boundary condition (A.20) for scalar soft breaking masses implies SY = SB−L =

0 at scale MX , they vanish at all scales. For completeness we nevertheless list these

contributions in the following.

We are now ready to give explicit expressions for the soft breaking β−functions in the

energy regions defined above.

A.2.1 Region I

Here the RGE are those of the MSSM [44]:

βhu
= hu

[

tr(3YuY †
u ) + 5YuY †

u + Y †
d Yd −

16

3
g2
3 − 3g2

2 −
13

15
g2
1

]

+Yu

[

tr(6huY †
u ) + 4huY †

u + 2Y †
d hd +

32

3
g2
3M3 + 6g2

2M2 +
26

15
g2
1M1

]

;

βhd
= hd

[

tr(3YdY
†
d + YeY

†
e ) + 5YdY

†
d + Y †

u Yu −
16

3
g2
3 − 3g2

2 −
7

15
g2
1

]

+Yd

[

tr(6hdY
†
d + 2heY

†
e ) + 4Y †

d hd + 2Y †
u hu +

32

3
g2
3M3 + 6g2

2M2 +
14

15
g2
1M1

]

:

βhe
= he

[

tr(3YdY
†
d + YeY

†
e ) + 5Y †

e Ye − 3g2
2 −

9

5
g2
1

]

+Ye

[

tr(6hdY
†
d + 2heY

†
e ) + 4Y †

e he + 6g2
2M2 +

18

5
g2
1M1

]

. (A.25)

βB = B

[

tr(3YuY †
u + 3YdY

†
d + YeY

†
e ) − 3g2

2 −
3

5
g2
1

]

+µ

[

tr(6huY †
u + 6hdY

†
d + 2heY

†
e ) + 6g2

2M2 +
6

5
g2
1M1

]

. (A.26)

βm2

Hu
= 6tr

[

(m2
Hu

+ m2
Q)Y †

u Yu + Y †
u m2

uYu + h†
uhu

]

− 6g2
2 |M2|

2 −
6

5
g2
1 |M1|

2 +
3

5
g2
1SY ;

βm2

Hd

= tr
[

6(m2
Hd

+ m2
Q)Y †

d Yd + 6Y †
d m2

dYd + 2(m2
Hd

+ m2
L)Y †

e Ye + 2Y †
e m2

eYe

+6h†
dhd + 2h†

ehe

]

− 6g2
2 |M2|

2 −
6

5
g2
1 |M1|

2 −
3

5
g2
1SY ;

βm2

Q
= (m2

Q + 2m2
Hu

)Y †
u Yu + (m2

Q + 2m2
Hd

)Y †
d Yd + [Y †

u Yu + Y †
d Yd]m

2
Q + 2Y †

u m2
uYu

+2Y †
d m2

dYd + 2h†
uhu + 2h†

dhd −
32

3
g2
3 |M3|

2 − 6g2
2 |M2|

2 −
2

15
g2
1 |M1|

2 −
1

5
g2
1SY ;

βm2

L
= (m2

L + 2m2
Hd

)Y †
e Ye + 2Y †

e m2
eYe + Y †

e Yem
2
L + 2h†

ehe

−6g2
2 |M2|

2 −
6

5
g2
1 |M1|

2 −
3

5
g2
1SY ;

βm2
u

= (2m2
u + 4m2

Hu
)YuY †

u + 4Yum2
QY †

u + 2YuY †
u m2

u + 4huh†
u −

32

3
g2
3 |M3|

2 −
32

15
g2
1 |M1|

2

−
4

5
g2
1SY ;
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βm2

d
= (2m2

d + 4m2
Hd

)YdY
†
d + 4Ydm

2
QY †

d + 2YdY
†
d m2

d + 4hdh
†
d −

32

3
g2
3 |M3|

2 −
8

15
g2
1 |M1|

2

+
2

5
g2
1SY ;

βm2
e

= (2m2
e + 4m2

Hd
)YeY

†
e + 4Yem

2
LY †

e + 2YeY
†
e m2

e + 4heh
†
e −

24

5
g2
1 |M1|

2 +
6

5
g2
1SY .

(A.27)

A.2.2 Region II

Most expression from Region I remain form-invariant; however, the Yukawa couplings

should now be interpreted as the high-scale couplings Yf,1 rather than as low-scale (MSSM)

couplings Yf . In addition, the beta-function for the SU(2)L singlet slepton mass changes,

and we have to introduce beta-function for mΣ as well as hN :

βhN
= hN

[

1

2
tr(Y †

NYN ) + 4YeY
†
e + 2YNY †

N −
36

5
g2
1

]

+YN

[

Y †
NhN + 8Y †

e he + 4Y †
NhN +

72

5
g2
1 |M1|

2

]

. (A.28)

βBΣ
= BΣ

[

1

2
tr(YNY †

N ) −
48

5
g2
1

]

+ MΣ

[

tr0(Y †
NhN ) +

96

5
g2
1 |M1|

2

]

. (A.29)

βm2
e

= (2m2
e + 4m2

Hd
)YeY

†
e + 4Yem

2
LY †

e + 2YeY
†
e m2

e + m2
eYNY †

N + 2Y †
Nm2

eYN

+YNY †
Nm2

e + 2Y †
Nm2

Σ
YN + (4m2

e + 2m2
Σ
)YNY †

N + 4heh
†
e + 2hNh†

N

−
24

5
g2
1 |M1|

2 +
6

5
g2
1SY ;

βm2

Σ

= tr

[

1

2
Y †

NYNm2
Σ̄ + 2Y †

Nm2
eYN +

1

2
YNY †

Nm2
Σ̄

]

+ hNh†
N −

96

5
g2
1 |M1|

2 +
12

5
g2
1SY .

(A.30)

MΣ appearing in the eq. (A.29) is the supersymmetric Σ and Σ mass, which comes from

a term MΣΣΣ in the superpotential. Note that to one-loop order BΣ does not appear on

the right-hand side of any other RGE, hence it has no impact on the low-energy spectrum.

We nevertheless list its RGE for completeness; it might be relevant, e.g., for the detailed

dynamics of intermediate-scale symmetry breaking, which we here merely parameterize

through the vev σ.

A.2.3 Regions III and IV

Here the number of independent parameters diminishes: SU(2)R invariance implies md =

mu ≡ mQc , me = mN ≡ mLc , mHu = mHd
≡ mΦ, hu = hd ≡ hq and he = hN ≡ hl at

energies ≥ MR:

βhq
= hq

[

tr(3YqY
†
q + YlY

†
l ) + 5YqY

†
q + Y †

q Yq −
16

3
g2
3 − 3g2

2 − 3g2
R −

g2
B−L

6

]

+Yq

[

tr(6hqY
†
q +2hlY

†
l )+4hqY

†
q +2Y †

q hq +
32

3
g2
3M3+6g2

2M2+6g2
RMR+

g2
B−L

3
MB−L

]

;
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βhl
= hl

[

tr(3YqY
†
q + YlY

†
l ) + 5YlY

†
l + Y †

l Yl +
3

2
Y †

NYN − 3g2
2 − 3g2

R −
3

2
g2
B−L

]

+Yl

[

tr(6hqY
†
q + 2hlY

†
l ) + 4hlY

†
l + 2Y †

l hl

+3Y †
NhN + 6g2

2M2 + 6g2
RMR + 3g2

B−L

]

;

βhN
= hN

[

1

2
tr(Y †

NYN ) + 4YlY
†
l + 3YNY †

N − 7g2
R −

9

2
g2
B−L

]

+YN

[

Y †
NhN + 8Y †

l hl + 6Y †
NhN + 14g2

RMR + 9g2
B−L

]

. (A.31)

βB = B
[

tr(6YqY
†
q + 2YlY

†
l ) − 3g2

2 − 3g2
R

]

+µ
[

tr(12hqY
†
q + 4hlY

†
l ) + 6g2

2M2 + 6g2
RMR

]

;

βBΣ
= BΣ

[

1

2
tr(YNY †

N ) − 8g2
R − 6g2

B−L

]

+MΣ

[

tr(Y †
NhN ) + 16g2

RMR + 12g2
B−LMB−L

]

. (A.32)

βm2

Φ

= tr
[

6(m2
Φ + m2

Q)Y †
q Yq + 6Y †

q m2
QcYq + 2(m2

Φ + m2
L)Y †

l Yl + 2Y †
l m2

LcYl

+6h†
qhq + 2h†

l hl

]

− 6g2
2 |M2|

2 − 6g2
R|MR|

2 ;

βm2

Σ̄

=
1

2
tr(Y †

NYNm2
Σ̄ + YNY †

Nm2
Σ̄) + tr(2Y †

Nm2
LcYN + h†

NhN )

−16|MR|
2g2

R − 12|MB−L|
2g2

B−L + 3g2
B−LSB−L ;

βm2

Σ

= −16|MR|
2g2

R − 12|MB−L|
2g2

B−L − 3g2
B−LSB−L ;

βm2

Q
= 2(m2

Q + 2m2
Φ)Y †

q Yq + 2Y †
q Yqm

2
Q + 4Y †

q m2
QcYq

+4h†
qhq −

32

3
g2
3 |M3|

2 − 6g2
2 |M2|

2 −
1

3
g2
B−L|MB−L|

2 +
1

2
g2
B−LSB−L ;

βm2

L
= 2(m2

L + 2m2
Φ)Y †

l Yl + 2Y †
l Ylm

2
L + 4Y †

l m2
l Yl (A.33)

+4h†
l hl − 6g2

2 |M2|
2 − 3g2

B−L|MB−L|
2 −

3

2
g2
B−LSB−L ;

βm2

Qc
= (2m2

Qc + 4m2
Φ)YqY

†
q + 4Yqm

2
QY †

q + 2YqY
†
q m2

Qc + 4hqh
†
q

−
32

3
g2
3 |M3|

2 − 6g2
R|MR|

2 −
1

3
g2
B−L|MB−L|

2 −
1

2
g2
B−LSB−L ;

βm2

Lc
= (2m2

Lc
+ 4m2

Φ)YlY
†
l +4Ylm

2
LY †

l +2YlY
†
l m2

Lc +4hlh
†
l +

3

2
m2

LcYNY †
N +

3

2
YNY †

Nm2
Lc

+3Y †
Nm2

LcYN +3Y †
Nm2

Σ̄YN +3h†
NhN −6g2

R|MR|
2−3g2

B−L|MB−L|
2 +

3

2
g2
B−LSB−L .

Note that Σ, which we introduced to allow a D−flat direction for symmetry breaking at

scale MR, does not have any superpotential couplings, hence its soft mass does not appear

in any of the other RGE. We again list its RGE for completeness.

A.2.4 Region V

At scales above MC the spectrum further simplifies: G422 invariance implies that mQ =

mL ≡ mF , mQc = mLc = mF c , and hq = hl ≡ h. In addition, the discrete D symmetry
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implies mΣL
= mΣR

≡ mΣ and mF = mF c:

βh = h

[

4tr(Y Y †) +
15

4
YNY †

N + 5Y Y † + Y †Y −
15

2
g2
4 − 3g2

2 − 3g2
R

]

+Y

[

tr(8hY †) +
15

2
hNY †

N + 4hY † + 2Y †h + 15g2
4M4 + 6g2

2M2 + 6g2
RMR

]

;

βhN
= hN

[

1

2
tr(Y †

NYN ) + 4Y Y † +
15

2
YNY †

N −
33

2
g2
4 − 7g2

R

]

+YN

[

tr(hNY †
N ) + 8Y †h + 15Y †

NhN + 33g2
4M4 + 14g2

RMR

]

. (A.34)

βB = B
[

tr(8Y Y †) − 3g2
2 − 3g2

R

]

+ µ
[

tr(16hY †) + 6g2
2M2 + 6g2

RMR

]

;

βBΣ
= BΣ

[

1

2
tr(YNY †

N ) − 8g2
R − 18g2

4

]

+ mΣ

[

tr(Y †
NhN ) + 16g2

RMR + 36g2
4M4

]

. (A.35)

βm2

Φ

= tr
[

8(m2
Φ + m2

F )Y †Y + 8Y †m2
F Y + 8h†

uhu

]

− 6g2
2 |M2|

2 − 6g2
R|MR|

2 ;

βm2

Σ

=
1

2
tr(Y †

NYNm2
Σ

+ YNY †
Nm2

Σ
) + tr(2Y †

Nm2
F YN + h†

NhN ) − 16|MR|
2g2

R − 36|M4|
2g2

4 ;

βm2

Σ

= −16|MR|
2g2

R − 36|M4|
2g2

4 ;

βm2
F

= 2(m2
F + 2m2

Φ)Y †Y + 2Y †Y m2
F +

15

4
(m2

F + 2m2
Σ̄)YNY †

N +
15

4
YNY †

Nm2
F

+
15

2
YNm2

F Y †
N +

15

2
hNh†

N + 4Y †m2FY + 4h†h − 15g2
4 |M4|

2 − 6g2
2 |M2|

2 . (A.36)
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